Telegram Group & Telegram Channel
Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ



tg-me.com/logic_sip/204
Create:
Last Update:

Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ

BY Финиковый накатайка


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/logic_sip/204

View MORE
Open in Telegram


LOGIC_SIP Telegram Group Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

LOGIC_SIP Telegram Group from tr


Telegram Финиковый накатайка
FROM USA